
Appendix D

Working with .NET Serviced Components

In order for serviced components to fire the necessary instrumentation events, it is necessary to
define a public interface for the component and to set certain attributes.

The following code sample illustrates the needed attribute settings and interface.

Code Prerequisites:

// Here we define the public interface for our Example class.

[ComVisible(true)]

public interface IExample

{

 int Method1(int Parm1);

}

// The class interface type MUST be set to AutoDual

[ClassInterface(ClassInterfaceType.AutoDual)]

[ComVisible(true)]

// The following attribute is optional, but if it isn’t set in the

// code, then the “Component supports events and statistics” checkbox

// on the component’s Activation properties page must be checked

// manually in the ComponentServices management console.

[EventTrackingEnabled]

// JIT activation defaults to off for components which are configured

// in COM+, but is enabled automatically if automatic transactions are

// requested.

//

// Here we’ll set it to on in our example

[JustInTimeActivationAttribute]

public class Example : ServicedComponent, IExample

{

 public int Method1(int Parm1)

 {

 return (Parm1);

}

}

Once built, the ServicedComponent application would then be deployed as usual, while ensuring
that it has been added to the COM+ catalog by either using the COM+ management console or
the RegSvcs.exe utility.

	Working with .NET Serviced Components
	Code Prerequisites:

